SCORED CHANGES

All the music relating to this website is written in conventional form. Scale-chord charts are also provided for many of the tunes. Experienced players can ignore these, but they may be a help to some people in getting around several of the more difficult progressions.

CONVENTIONAL SYMBOLS

The chord symbols used are as follows:

a major seventh chord \triangle eg. $C\triangle$ a minor chord m eg. Cm a minor seventh chord m⁷ eg. Cm⁷ a diminished chord \circ eg. C^o a half-diminished chord \emptyset eg. C^Ø (ie. Cm⁷⁻⁵) an altered chord alt eg. Calt a flattened 9th and a sharpened 9th $^{\downarrow 9}$ and $^{\sharp 9}$ a flattened 5th and a sharpened 5th $^{-5}$ and $^{+5}$ (Note that a triad with a sharpened/augmented fifth omits the 5, thus C⁺, whereas a dominant seventh with a sharpened fifth is either C⁷⁺ or C⁷⁽⁺⁵⁾.)

A dominant seventh where the major 3rd is replaced by the 4th is either written as, for example, $C^{7}sus^{4}$ or Gm^{7}/C (which pianists often prefer) or C¹¹. Because the C11 takes up much less space than the others I have used this symbol where there is very little space available. (I have taken into account the fact that the 9th and 13th can often be added to this chord.) The (major) 3rd of this chord is omitted, unless specified otherwise, owing to the clash between the 3rd and the 11th (the E and the F in a C11).

Two other symbols need to be mentioned. C^2 refers to a C triad with the 2nd (D) added to it. This fattens up a triad without turning it into a dominant seventh. It is found in a lot of modern pop music.

A C⁺⁴, which I used in the bass part of *Hibakusha*, merely means that the sharpened 4th should be played in place of the natural 4th, ie. the Lydian mode.

SCORED CHANGES

SCORED CHANGES is a way of showing which scales apply to the chords in a progression. The term SCORED is derived from the words <u>scale</u> and ch<u>ord</u> with the spelling somewhat amended.

By including the scales as well as the chords, an improviser can tell at a glance which notes are available to be played: the chordal notes and the notes in-between. This should make it easier to play solos on complex sequences which are often found in modern jazz.

The notation consists of <u>two</u> levels. On the top is the scale, separated by a horizontal line from the chord. Although this can appear daunting at first, it doesn't take long to get used to and it removes a lot of uncertainty which can result in hesitant or inaccurate playing.

The <u>scales</u> that are mostly used are as follows. (*The C in the examples can be transposed to other notes.*)

C (ie. just the note) = C major scale Cm = C minor, ie. the ascending form of the melodic minor (This will be referred to as the *minor* scale) CmH = C harmonic minor Cm mel = C melodic minor (rarely used) CWT= C whole tone scale (ie. C D E F[#] G[#] A[#] C) C^o = C diminished scale (ie. C D E^b F G^b A^b A B C) C⁶⁹ = C major pentatonic Cm⁶⁹ = C minor pentatonic CA = C Arabian/Middle-Eastern scale (ie. C D^b E F G A^b B C)

All modes which use the same notes as a major scale are referred to as the major scale, thus:

C	C	<u>C</u>	С	С	C
Dm ⁷	$\overline{\mathrm{Em}^{7}}$	F^{Δ}	$\overline{\mathbf{G}^7}$	$\overline{\mathrm{Am}}^{7}$	$\overline{\mathbf{B}^{\varnothing}}$

representing the Dorian, Phrygian, Lydian, Mixo-Lydian, Aeolian and Docrian modes respectively.

The same applies to scales/modes starting on the different notes of the minor scale, for example:

Cm	Cm	Cm
F ⁷	\mathbf{G}^7	B ⁷

The last one is how the *altered* scale/chord looks.

The Dorian is the most common mode used for a minor seventh chord. The scale is sometimes written like a chord, for example, a Bm⁷ instead of an A (an A major scale). The reasons for this are two-fold. It spells out the arpeggio of the chord in certain combinations, for example $G^{\sharp}BDF^{\sharp}(A)$, in this symbol: <u>Bm7</u>

 $\overline{G^{\sharp \varnothing}}$

If the scale was written as A instead of Bm7, there might be a temptation, at least amongst inexperienced players, to hang on the first note of the scale which would not sound very pleasant.

The other reason is that it is easy to write two alternative scales, merely by enclosing the 7 in brackets: $Cm^{(7)}$ can thus refer to Cm or B^{\downarrow} (C Dorian).

Brackets are also used to avoid repetition in cases such as Cm⁽H⁾ instead of Cm/CmH.

Alternative scales are in most other instances shown by a forward slash:

Harmonic minor and more exotic scales are placed above the other scale to make them stand out more.

Of course where the scale is obvious, it need not be included at all.

A continuous line from a scale indicates that the scale is continued over to the next chord or chords.

One last point with regard to scales. By specifying which scales can be used, this does not preclude the use of chromatic notes of any kind passing notes, neighbouring notes, blues notes, etc. Chords and patterns within the scales can be used rather than thinking in a purely scalar manner. The scales, in fact, need not be strictly adhered to, but they will guide you through some of the trickier chords and give a clearer indication of the tonality than a series of elaborate chords can hope to do. There is also the possibility of replacing the scale with one of your own choosing if desired.

Regarding the <u>chords</u> underneath, all of them must have a symbol to show they are chords and not single notes. This means that for major chords a \triangle or a 6 must be added to the note, eg. C \triangle .

Where the conventional chord calls for a pedal note or note other than the root note to be the bass note this is stated in this way: C(G bass).

In the case of the slash chord Cm^7/F (another way of writing $F^{7}sus^4$ or F^{11})

the only change necessary is to change the F to F^{11} . As stated earlier, the Cm^7 is then treated as the Dorian (B¹, major scale).

The same thing applies to C^{\emptyset}/F (ie. $Cm^{7(5)}/F$) where the chord becomes F^{11} but the scale changes to $E^{\downarrow}m$ ($E^{\downarrow}m^6$ is an inversion of C^{\emptyset}), $E^{\downarrow}m^7$ or $E^{\downarrow}m^{(7)}$ depending upon which scales are required. The chord may also be written as $C^{\emptyset}(F \text{ bass})$.

Only the <u>basic</u> form of the chord is required as all the extensions and alterations can be found in the scale above. Pianists and guitar players - take note. The only exception is where a relatively uncommon chord is required, eg $C^{\Delta(+5)}$.

For superimpositions in the original music - one chord on top of another for example, $F^6/E^{\flat \Delta}$, the lowest part of the chord is written first, thus $E^{\flat \Delta +}F^6$. Many superimpositions are in effect easier ways of thinking about complex chords. This chord could also be written as an $E^{\flat \Delta 13(+11)}$. For soloing purposes this is simplified in the scored-changes method to $\frac{B^{\flat}}{E^{\flat \Delta}}$

Many superimpositions involve triads. To indicate these the symbol 5 is used, eg. C⁵. This will be pointed out in many of the charts where this occurs.

(Incidentally where chords are written in the stave, one of the stave lines may obscure the minus sign in the conventional notation. This can occur in chords such as C^{7-5} . My apologies for this.)

Well, I hope this hasn't put you off altogether. It's a lot easier than it seems. So to see how it looks in practice go to the tune called *Two's Company* on the next page written out normally and with a scored-changes chart. A free arrangement of this can be found in the Small Band section.

SCALE CHORD

$\begin{bmatrix} \frac{F}{F^{\Delta}} & B^{\flat \Delta} & \begin{bmatrix} \frac{C}{Am^{7}} & \frac{E^{\flat}m^{(7)}}{A^{\flat 7}} \end{bmatrix} \begin{bmatrix} \frac{A^{\flat}}{D^{\flat \Delta}} & \frac{D^{\flat}m}{C^{7}} \end{bmatrix} \begin{bmatrix} \frac{Cm^{7}}{F^{11}} & \frac{E^{\flat}m}{D^{7}} \end{bmatrix}$
--

AT A GLANCE

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CONVENTIONAL SYMBOLS	SCORED CHANGES
$\begin{array}{c c} \hline G & G & G \\ \hline C^{6(+11)}, C^{69+11)}, C^{\Delta(+11)}, C^{\Delta9(+11)}, CLydian & \hline C^{6} & G^{6} & \hline C^{\Delta} \\ \hline C & Gypsy/Hungarian/Arabic (C D) E F G A^{i} B C) & C^{4} \\ \hline C^{+}, C^{(+5)}, C^{\Delta(+5)} & \hline \frac{Am}{C^{\Delta(+5)}} & \hline \frac{AmH}{C^{\Delta(+5)}} \\ \hline Cm^{6}, Cm^{69}, Cm^{\Delta}, Cm, Cm triad & Cm & Cm^{5} (if triad) \\ \hline C & Gypsy minor (C D E^{i} F^{i} G A^{i} B C) & GA (G A^{i} B C D E^{i} F^{i} G) (= same scale) \\ \hline Cm^{7}, Cm^{9}, Cm^{11}, Cm^{13}, C^{*}, C Dorian & \hline Cm^{7} \\ \hline Cm^{7}, Cm^{9}, Cm^{11}, Cm^{13}, C^{*}, C Dorian & \hline Cm^{7} \\ \hline Cm^{7}, Cm^{9}, Cm^{11}, Cm^{13}, C^{*}, C Aolian & \hline \frac{E^{i}}{Cm^{7}} \\ \hline Cm^{7}, Cm^{9}, Cm^{11}, Cm^{13}, C^{*}, C Phrygian & \hline C^{0}, & \hline \frac{D^{i}mH}{C^{0}} \\ \hline C^{0}, Cm^{7(5)}, Cm^{7(5)} & \hline \frac{E^{i}m}{C^{0}}, & \hline \frac{E^{i}m^{7}}{C^{9}}, & \hline \frac{E^{i}m^{(7)}}{C^{9}} \\ \hline E^{i}m^{6} & C^{9} & \hline \end{array}$	C^{Δ} , $C^{\Delta 9}$, C^{6} , C^{69} , C , C triad	C^{Δ} , C^{6} , C^{5} (if triad)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$C^{6(+11)}$, $C^{69+11)}$, $C^{\Delta(+11)}$, $C^{\Delta 9(+11)}$, CLydian	$\frac{G}{C^6}$, $\frac{G}{C^{\Delta}}$
C^+ , $C^{(+5)}$, $C^{\Delta(+5)}$ $\frac{Am}{C^{\Delta(+5)}}$ $\frac{AmH}{C^{\Delta(+5)}}$ Cm^6 , Cm^6 , Cm^A , Cm , Cm triad Cm , Cm^5 (if triad) C Gypsy minor (C D E ⁱ F [‡] G A ⁱ B C) GA (G A ⁱ B C D E ⁱ F [‡] G) (= same scale) Cm^7 , Cm^9 , Cm^{11} , Cm^{13} , C^- , C Dorian $\frac{B^i}{Cm^7}$ Cm^7 , Cm^9 , Cm^{11} , Cm^{13} , C^- , C Aolian $\frac{E^i}{Cm^7}$ Cm^7 , Cm^9 , Cm^{11} , Cm^{13} , C^- , C Phrygian $\frac{A^i}{Cm^7}$ C^{o} C^{o} , $\frac{D^{b}mH}{C^{o}}$ C^{o} , $Cm^{7(-5)}$, $Cm^{7(b5)}$ $\frac{E^im^7}{C^o}$, $\frac{E^im^{(7)}}{C^o}$ E^im^6 C^{o} E^im	C Gypsy/Hungarian/Arabic (C D \downarrow E F G A \downarrow B C)	\mathbf{C}^{A}
$\begin{array}{c c} Cm^{6}, Cm^{69}, Cm^{\Delta}, Cm, Cm triad \\ \hline C \ Gypsy \ minor \ ^{(C \ D \ E^{\flat} \ F^{\sharp} \ G \ A^{\flat} \ B \ C} & GA \ ^{(G \ A^{\flat} \ B \ C \ D \ E^{\flat} \ F^{\sharp} \ G} \ (= same \ scale \) \\ \hline Cm^{7}, Cm^{9}, Cm^{11}, Cm^{13}, C^{\bullet}, C \ Dorian \\ \hline Cm^{7}, Cm^{9}, Cm^{11}, Cm^{13}, C^{\bullet}, C \ Aolian \\ \hline Cm^{7}, Cm^{9}, Cm^{11}, Cm^{13}, C^{\bullet}, C \ Phrygian \\ \hline Cm^{7}, Cm^{9}, Cm^{11}, Cm^{13}, C^{\bullet}, C \ Phrygian \\ \hline Cm^{7}, Cm^{9}, Cm^{11}, Cm^{13}, C^{\bullet}, C \ Phrygian \\ \hline Cm^{7}, Cm^{9}, Cm^{11}, Cm^{13}, C^{\bullet}, C \ Phrygian \\ \hline C^{9}, Cm^{7}, Cm^{7(\flat 5)}, Cm^{7(\flat 5)} \\ \hline C^{9}, C^{9}, C^{9}, C^{9} \\ \hline C^{9}, C^{9}, C^{9}, C^{9} \\ \hline E^{\flat}m^{6} \ C^{9} \\ \hline E^{\flat}m \ E^{\flat}m^{7} \ E^{\flat}m^{(7)} \\ \hline \end{array}$	C^+ , $C^{(+5)}$, $C^{\Delta(+5)}$	$\frac{\mathrm{Am}}{\mathrm{C}^{\Delta(+5)}} \qquad \frac{\mathrm{AmH}}{\mathrm{C}^{\Delta(+5)}}$
C Gypsy minor (C D E \nabla F \nabla G A \nabla B C) $GA (G A \nabla B C D E \nabla F \nabla G) (= same scale)$ Cm7, Cm9, Cm11, Cm13, C-, C Dorian $\frac{B^{1}}{Cm7}$ Cm7, Cm9, Cm11, Cm13, C-, C Aolian $\frac{E^{1}}{Cm7}$ Cm7, Cm9, Cm11, Cm13, C-, C Phrygian $\frac{A^{1}}{Cm7}$ Cm7, Cm9, Cm11, Cm13, C-, C Phrygian $\frac{C^{\circ}}{Cm7}$ Co $\frac{C^{\circ}}{C^{\circ}}$, $\frac{D^{1}mH}{C^{\circ}}$ C ^o , Cm7(-5), Cm7(-5), Cm7(-5) $\frac{E^{1}m}{C^{\circ}}$, $\frac{E^{1}m7}{C^{\circ}}$, $\frac{E^{1}m(7)}{C^{\circ}}$ E^{1}m6C^{\circ} $\frac{E^{1}m}{E^{1}m}$	Cm ⁶ , Cm ⁶⁹ , Cm [△] , Cm , Cm triad	Cm, Cm ⁵ (if triad)
$\begin{array}{c c} \hline Cm^7, Cm^9, Cm^{11}, Cm^{13}, C^-, C \text{ Dorian} & \hline Cm^7 \\ \hline Cm^7, Cm^9, Cm^{11}, Cm^{13}, C^-, C \text{ Aolian} & \hline \underline{E^{\flat}}_{Cm^7} \\ \hline Cm^7, Cm^9, Cm^{11}, Cm^{13}, C^-, C \text{ Phrygian} & \hline \underline{Cm^7} \\ \hline Cm^7, Cm^9, Cm^{11}, Cm^{13}, C^-, C \text{ Phrygian} & \hline \underline{Cm^7} \\ \hline C^{\circ}, & \hline C^{\circ}, & \hline \underline{C^{\circ}} \\ \hline C^{\circ}, & Cm^{7(-5)}, Cm^{7(\flat 5)} & \hline \underline{E^{\flat}m} & \underline{E^{\flat}m^7} & \underline{E^{\flat}m^{(7)}}_{C^{\circ}} \\ \hline \underline{E^{\flat}m^6} & C^{\circ} & \underline{E^{\flat}m} & \underline{E^{\flat}m^7} & \underline{E^{\flat}m^{(7)}} \\ \hline \end{array}$	C Gypsy minor $(C D E_{\flat} F_{\dagger} G A_{\flat} B C)$	$GA (GA^{\downarrow} BCDE^{\downarrow} F^{\sharp} G) (= \text{same scale})$
$\begin{array}{c c} Cm^7, Cm^9, Cm^{11}, Cm^{13}, \mathbb{C}^{-}, CAolian & \frac{E^{\flat}}{Cm^7} \\ \hline Cm^7, Cm^9, Cm^{11}, Cm^{13}, \mathbb{C}^{-}, C Phrygian & \frac{A^{\flat}}{Cm^7} \\ \hline C^{\circ} & C^{\circ}, & \frac{D^{\flat}mH}{C^{\circ}} \\ \hline C^{\circ}, & Cm^{7(5)}, & Cm^{7(\flat5)} & \frac{E^{\flat}m}{C^{\circ}}, & \frac{E^{\flat}m^{(7)}}{C^{\circ}} \\ \hline E^{\flat}m^6 & C^{\circ} & \underline{E^{\flat}m} & E^{\flat}m^{7} & E^{\flat}m^{(7)} \\ \hline \end{array}$	Cm ⁷ , Cm ⁹ , Cm ¹¹ , Cm ¹³ , C ⁻ , C Dorian	$\frac{B^{\downarrow}}{Cm^7}$
$\begin{array}{c} Cm^{7}, Cm^{9}, Cm^{11}, Cm^{13}, C^{-}, C \ Phrygian \\ \hline C^{\circ} \\ \hline C^{\circ} \\ \hline C^{\circ}, \ Cm^{7(-5)}, \ Cm^{7(\flat 5)} \\ \hline E^{\flat}m^{6} \\ \hline C^{\varnothing} \\ \hline E^{\flat}m^{6} \\ \hline C^{\varnothing} \\ \hline \end{array} \begin{array}{c} \hline E^{\flat}m \\ \hline E^{\flat}m^{7} \\ \hline \end{array} \begin{array}{c} \hline E^{\flat}m^{(7)} \\ \hline E^{\flat}m^{7} \\ \hline \end{array} \begin{array}{c} \hline E^{\flat}m^{7} \\ \hline E^{\flat}m^{7} \\ \hline \end{array} \begin{array}{c} \hline E^{\flat}m^{7} \\ \hline E^{\flat}m^{7} \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline E^{\flat}m^{7} \\ \hline \end{array} \begin{array}{c} \hline E^{\flat}m^{7} \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline E^{\flat}m^{7} \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline E^{\flat}m^{7} \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline E^{\flat}m^{7} \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline E^{\flat}m^{7} \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline E^{\flat}m^{7} \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline E^{\flat}m^{7} \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline E^{\flat}m^{7} \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline E^{\flat}m^{7} \\ \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline E^{\flat}m^{7} \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline E^{\flat}m^{7} \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline E^{\flat}m^{7} \\ \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} $	Cm^7 , Cm^9 , Cm^{11} , Cm^{13} , C^- , CAolian	$\frac{E^{\flat}}{Cm^{7}}$
$\frac{C^{\circ}}{C^{\varnothing}, Cm^{7(-5)}, Cm^{7(\flat 5)}} \qquad $	Cm^7 , Cm^9 , Cm^{11} , Cm^{13} , C^- , C Phrygian	$\frac{A^{\flat}}{Cm^7}$
$\frac{E^{\flat}m}{C^{\varnothing}}, Cm^{7(-5)}, Cm^{7(\flat 5)} \qquad \qquad \frac{E^{\flat}m}{C^{\varnothing}}, \frac{E^{\flat}m^{7}}{C^{\varnothing}}, \frac{E^{\flat}m^{(7)}}{C^{\varnothing}} \\ E^{\flat}m^{6} \qquad \qquad C^{\varnothing} \qquad \qquad \frac{E^{\flat}m}{E^{\flat}m^{7}} \qquad E^{\flat}m^{(7)} \\ \end{array}$	Co	$C^{o}, \qquad \frac{D^{b}mH}{C^{o}}$
$E^{\flat}m^{6}$ C^{\varnothing} $E^{\flat}m^{7}$ $E^{\flat}m^{(7)}$	C^{\emptyset} , $Cm^{7(-5)}$, $Cm^{7(b,5)}$	$\frac{\underline{\mathrm{E}}^{\flat}\underline{\mathrm{m}}}{\mathrm{C}^{\varnothing}}, \frac{\underline{\mathrm{E}}^{\flat}\underline{\mathrm{m}}^{7}}{\mathrm{C}^{\varnothing}}, \frac{\underline{\mathrm{E}}^{\flat}\underline{\mathrm{m}}^{(7)}}{\mathrm{C}^{\varnothing}}$
\overline{F} , \overline{F} F^{11} , $\overline{F^{11}}$, $\overline{C^{\varnothing}}$	$\frac{E^{\flat}m^{6}}{F}$, $\frac{C^{\varnothing}}{F}$	$\frac{\underline{\mathrm{E}}^{\flat}\underline{\mathrm{m}}}{\mathrm{F}^{11}}, \qquad \frac{\underline{\mathrm{E}}^{\flat}\underline{\mathrm{m}}^{7}}{\mathrm{F}^{11}}, \qquad \frac{\underline{\mathrm{E}}^{\flat}\underline{\mathrm{m}}^{(7)}}{\mathrm{C}^{\varnothing}}$
$C^{7(+5)}$, C^{7+} $\frac{Fm}{C^{7}}$	C ⁷⁽⁺⁵⁾ , C ⁷⁺	$\frac{\mathrm{Fm}}{\mathrm{C}^7}$
$\begin{array}{c} C^{7} \text{alt} , \ C^{7(\sharp 9)} \ C^{7(\flat 9+5)} , \ C^{7(\sharp 9+5)} , \ C^{7(\sharp 9\flat 9+5)} \\ C^{7(\flat 9)} , \ C^{7(\sharp 9)} , \ C^{7(\sharp 95)} \ , \ C^{7(\sharp 9\flat 9-5)} \end{array} \qquad \left\{ \begin{array}{c} \underline{D}^{\flat} m \\ \overline{C^{7}} \end{array} \right.$	C ⁷ alt, C ^{7($\#9$)} C ^{7($\\$9+5$)} , C ^{7($\#9+5$)} , C ^{7($\#9\\$9+5$)} C ^{7($\\$9$)} , C ^{7($\#9$)} , C ^{7($\\95)} , C ^{7($\#9\\$9-5$)}	$\Big\{\frac{\mathrm{D}^{\flat}\mathrm{m}}{\mathrm{C}^{7}}$
$C^{13(\flat9)}, C^{13(\sharp9)}, C^{13(\sharp9-5)}, C^{13(\flat9-5)}, C^{13(\sharp9\flat9-5)}, C^{13(\sharp9\flat9-5)}$	$C^{13(\flat9)}, C^{13(\#9)}, C^{13(\#9-5)}, C^{13(\flat9-5)}, C^{13(\#9\flat9-5)}$	$\frac{D^{b} o}{C^{7}}$
$C^{7(-5)}$, $C^{9(-5)}$, $C^{13(-5)}$ $\frac{Gm}{C^7}$	$C^{7(-5)}$, $C^{9(-5)}$, $C^{13(-5)}$	$\frac{Gm}{C^7}$
$\frac{\underline{Gm}^{7}}{\underline{C}}, \underline{C^{7}}\mathrm{sus}^{4} \qquad \frac{\underline{Gm}^{7}}{\underline{C^{11}}}$	$\frac{\mathrm{Gm}^{7}}{\mathrm{C}}$, $\mathrm{C}^{7}\mathrm{sus}^{4}$	$\frac{\mathrm{Gm}^7}{\mathrm{C}^{11}}$
$\frac{B \text{ triad}}{C \text{ triad}} \qquad \qquad \frac{EmH}{C^{5+}B^5} \qquad \frac{B^A}{C^{5+}B^5}$	$\frac{\mathbf{B} \text{ triad}}{\mathbf{C} \text{ triad}}$	$\frac{\text{EmH}}{\text{C}^{5+}\text{B}^5} \qquad \frac{\text{B}^A}{\text{C}^{5+}\text{B}^5}$